Chebyshev Type Quadrature Formulas*

By David K. Kahaner

Abstract. Quadrature formulas of the form

$$\int_{-1}^{1} f(x) \, dx \approx \frac{2}{n} \sum_{i=1}^{n} f(x_i^{(n)})$$

are associated with the name of Chebyshev. Various constraints may be posed on the formula to determine the nodes $x_i^{(n)}$. Classically the formula is required to integrate *n*th degree polynomials exactly. For n = 8 and $n \ge 10$ this leads to some complex nodes. In this note we point out a simple way of determining the nodes so that the formula is exact for polynomials of degree less than n. For n = 8, 10 and 11 we compare our results with others obtained by minimizing the *l*²-norm of the deviations of the first n + 1 monomials from their moments and point out an error in one of these latter calculations.

In a recent paper Barnhill, Dennis and Nielson [1] considered the possibility of finding quadrature formulas of the form

(1)
$$\int_{-1}^{1} f(x) \, dx \approx \frac{2}{n} \sum_{k=1}^{n} f(x_k)$$

with x_k symmetric in [-1, 1] so that

$$\sigma_n = \sum_{j=0}^n \left[\frac{2}{n} \sum_{k=1}^n x_k^j - m_j \right]^2$$

is minimized, where $m_i = \int_{-1}^{1} x^i dx$. They have computed solutions numerically for n = 8, 10 and 11. Classically the x_i had been determined so (1) is exact for $1, x, \dots, x^n$ but this leads to some complex nodes if n = 8 or $n \ge 10$.

Another possibility is to consider formulas (1) with the x_i chosen so (1) is exact for 1, x, \dots, x^p , p < n with $x_i \in [-1, 1]$. This problem does not have a solution if n and p are both required to be large [2], [3]. Nevertheless, for the small n considered here, this problem has easily computed solutions. Although σ_n will not in general be minimized, the resulting formulas have a certain appeal since polynomials of degree por less can be integrated exactly.

If (1) is to be exact for 1, x, \dots, x^{p} , p < n, we are led to the system of equations

(1')
$$\frac{m_k}{2} = \frac{1}{n} S_k, \quad k = 0, 1, \cdots, p,$$

where

$$S_k = \sum_{i=1}^n x_i^k, \quad k = 0, 1, \cdots, p, \cdots.$$

Copyright © 1971, American Mathematical Society

Received June 16, 1969, revised October 16, 1969.

AMS Subject Classifications. Primary 6555, 4144.

Key Words and Phrases. Numerical quadrature, Chebyshev quadrature, equal-weight quadrature.

^{*} This research was supported by the U.S. Atomic Energy Commission under Contract No. W-7405-ENG-36.

We observe that (1') defines the sum of the first p powers of the n numbers x_1, \dots, x_n . Consequently neither S_{p+1}, \dots, S_n nor the p + 1st through nth symmetric function of x_1, \dots, x_n are uniquely determined. Thus if ${}_0T_n$ and ${}_{n-p}T_n$ are nth degree polynomials whose zeros give a set of nodes for p = n and p < n respectively, then

$$_{n-p}T_n = _0T_n - \pi_{n-p-1}$$

where π_{n-p-1} is an arbitrary (n - p - 1)st degree polynomial.** In order to characterize π more exactly, we use a modification of a technique in Hildebrand [4] originally due to Chebyshev. If $|x| > \{1, |x_i|\}$,

$$\int_{-1}^{1} \frac{dt}{x-t} - \frac{2}{n} \frac{n-p}{n-p} \frac{T'_n(x)}{n-p} = \sum_{k=p+2}^{\infty} \frac{\mathfrak{A}_{k-1}}{x^k} ,$$
$$\mathfrak{A}_k = m_k - \frac{2}{n} S_k$$

After an integration with respect to x and some manipulation we get

$$\sum_{n-p} T_n(x) = cx^n \exp\left\{-n\left[\frac{1}{2\cdot 3x^2} + \frac{1}{4\cdot 5x^4} + \cdots\right] - \left[\frac{b_{p+1}}{x^{p+1}} + \cdots + \frac{b_{n-1}}{x^{n-1}} + \frac{b_n}{x^n}\right]\right\} \\ \cdot \exp\left\{-\sum_{k=n+1}^{\infty} \frac{b_k}{x^k}\right\}, \qquad b_k = -\frac{n}{2}\frac{\alpha_k}{k}.$$

Because of the left-hand side, series expansion on the right must terminate and thus neither the second exponential nor terms in first past $(1/n(n + 1))(1/x^n)$ can contribute to the polynomial part.

Thus

$$a_{n-p}T_n(x) = \text{Polynomial Part} \left[cx^n \exp\left\{ -n \sum_{i=2}^n \frac{c_i}{x^i} - \sum_{i=p+1}^n \frac{b_i}{x^i} \right\} \right]$$
$$c_i = \frac{1}{j(j+1)} \qquad j \text{ even,}$$
$$= 0 \qquad j \text{ odd.}$$

For p = n - 1 the contribution of $-b_n/x^n$ appears in the constant term of ${}_1T_n$ as

(2)
$${}_{1}T_{n} = {}_{0}T_{n} - b_{n} = {}_{0}T_{n} - S_{n}/n + m_{n}/2$$

For p = n - 2 the contribution of $-b_{n-1}/x^{n-1} - b_n/x^n$ appears as

(3)
$$_{1}T_{n} = _{0}T_{n} - xb_{n-1} - b_{n} = x \frac{n}{n-1} \left(\frac{m_{n-1}}{2} - \frac{S_{n-1}}{n} \right) - \frac{S_{n}}{n} + \frac{m_{n}}{2}$$

For n = 8 or n = 10 examination of the curves ${}_{0}T_{n} - b_{n}$ reveals that only for a small range of values of b_{n} does ${}_{0}T_{n} - b_{n}$ have *n* real zeros. In that case we have from (2)

$$\sigma_n = (2b_n)^2, \quad n = 8 \text{ or } 10.$$

 $^{**}\pi_{-1} \equiv 0.$

For n = 11, ${}_{0}T_{11}$ is odd and has three real zeros. Thus ${}_{0}T_{11} - b_{11}$ cannot have all real zeros, eliminating the possibility of p = n - 1 for this case. If p = n - 2 = 9, ${}_{0}T_{11} - \alpha x - \beta$ will have 11 real zeros for appropriate α and β . From (3)

(4)
$$\sigma_{11} = \left[\frac{2}{11}\sum_{j=1}^{11}x_j^{10} - m_{10}\right]^2 + \left[\frac{2}{11}\sum_{j=1}^{11}x_j^{11} - m_{11}\right]^2$$
$$= \left(\frac{20}{11}\alpha\right)^2 + (2\beta)^2.$$

To preserve symmetry we set $\beta = 0$.

TABLE I				
n	b_n	$\sigma_n(b_n)$	\pm Nodes (b_n)	$_{\min}\sigma_{n}$
8	-1.01117×10^{-3} $\begin{pmatrix}27075 \times 10^{-2} < b_8 \\ \text{for real} \end{pmatrix}$	4.08986×10^{-6} <101117 × 10 ⁻² nodes	0. .443754) .572618 .899179	.79221 × 10 ⁻⁶
10	-5.955352×10^{-4} $\begin{pmatrix}7655 \times 10^{-3} < b_{10} < \\ \text{for real} \end{pmatrix}$	1.41865×10^{-6} < 5955352×10^{-3} nodes	.196220 .196124 .571377 .920199 .645338	.30362 × 10 ⁻⁶
11	$\frac{\alpha}{-3.14483 \times 10^{-4}}$ $\begin{pmatrix} -8.53270 \times 10^{-4} < \alpha \\ \text{for real} \end{cases}$	$\frac{\sigma_{n}(\alpha)}{3.26941 \times 10^{-7}} < -3.14483 \times 10^{-4}$ nodes	$\frac{\text{Nodes } (\alpha)}{0.0} \\ \pm .264246 \\ \pm .264492 \\ \pm .614765 \\ \pm .674800 \\ \pm .927502 $.34535 × 10 ^{−6} *

In Table I we list the approximate values of b_8 , b_{10} and α that give all real zeros, the minimum σ_n 's consistent with these values and the corresponding quadrature nodes. Also we list the minimum σ_n 's as computed by Barnhill et al. It should be noted that their minimum σ_{11} is in error and the quadrature formula they have obtained corresponds roughly to selecting an α at the wrong end of the allowable interval since (4) shows $\sigma_{11} \sim \alpha^2$. Also note that for n = 8 and n = 10 requiring (1) to be exact for (n - 1)st degree polynomials only increases σ_n above the computed minimum about a factor of five.

^{*}In error. Nodes corresponding to this value of σ_n are [1]; \pm .92676, \pm .70492, \pm .51792, \pm .45740, 0, 0, 0. Compare with nodes corresponding to $\alpha = -8.53270 \times 10^{-4}$ and $\sigma_n(\alpha) = 2.40684 \times 10^{-4}$; \pm .925039, \pm .898403, \pm .716634, \pm .477831, \pm .477155, 0.

DAVID K. KAHANER

Barnhill observes that the quadrature formula corresponding to minimum σ_n has multiple nodes at the origin. It is no longer clear if this will hold for n = 11. By the manner in which they were chosen our quadrature formulas should have multiple nodes at some point in [-1, 1] although for n = 10 and 11 we have only computed these nodes so that they agree to three figures.

Los Alamos Scientific Laboratory Los Alamos, New Mexico 87544

1. R. BARNHILL, J. DENNIS & G. NIELSON, "A new type of Chebyshev quadrature," Math.

Comp., v. 23, 1969, p. 437.
2. A. MEIR & A. SHARMA, "A variation of the Tchebicheff quadrature problem," Illinois J. Math., v. 11, 1967, pp. 535-546. MR 35 #7058.
3. D. KAHANER, "Equal weight and almost equal weight quadrature formulas," SIAM J. Numer. Anal., v. 6, 1969, pp. 551-556.
4. F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956, 246 MB 17 782

p. 346. MR 17, 788.