Chebyshev Type Quadrature Formulas*

By David K. Kahaner

Abstract. Quadrature formulas of the form

$$
\int_{-1}^{1} f(x) d x \approx \frac{2}{n} \sum_{i=1}^{n} f\left(x_{i}^{(n)}\right)
$$

are associated with the name of Chebyshev. Various constraints may be posed on the formula to determine the nodes $x_{i}^{(n)}$. Classically the formula is required to integrate nth degree polynomials exactly. For $n=8$ and $n \geqq 10$ this leads to some complex nodes. In this note we point out a simple way of determining the nodes so that the formula is exact for polynomials of degree less than n. For $n=8,10$ and 11 we compare our results with others obtained by minimizing the l^{2}-norm of the deviations of the first $n+1$ monomials from their moments and point out an error in one of these latter calculations.

In a recent paper Barnhill, Dennis and Nielson [1] considered the possibility of finding quadrature formulas of the form

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \frac{2}{n} \sum_{k=1}^{n} f\left(x_{k}\right) \tag{1}
\end{equation*}
$$

with x_{k} symmetric in $[-1,1]$ so that

$$
\sigma_{n}=\sum_{i=0}^{n}\left[\frac{2}{n} \sum_{k=1}^{n} x_{k}^{j}-m_{i}\right]^{2}
$$

is minimized, where $m_{i}=\int_{-1}^{1} x^{i} d x$. They have computed solutions numerically for $n=8,10$ and 11. Classically the x_{i} had been determined so (1) is exact for $1, x, \cdots, x^{n}$ but this leads to some complex nodes if $n=8$ or $n \geqq 10$.

Another possibility is to consider formulas (1) with the x_{i} chosen so (1) is exact for $1, x, \cdots, x^{p}, p<n$ with $x_{i} \in[-1,1]$. This problem does not have a solution if n and p are both required to be large [2], [3]. Nevertheless, for the small n considered here, this problem has easily computed solutions. Although σ_{n} will not in general be minimized, the resulting formulas have a certain appeal since polynomials of degree p or less can be integrated exactly.

If (1) is to be exact for $1, x, \cdots, x^{p}, p<n$, we are led to the system of equations

$$
\frac{m_{k}}{2}=\frac{1}{n} S_{k}, \quad k=0,1, \cdots, p,
$$

where

$$
S_{k}=\sum_{i=1}^{n} x_{i}^{k}, \quad k=0,1, \cdots, p, \cdots
$$

Received June 16, 1969, revised October 16, 1969.
AMS Subject Classifications. Primary 6555, 4144.
Key Words and Phrases. Numerical quadrature, Chebyshev quadrature, equal-weight quadrature.

* This research was supported by the U.S. Atomic Energy Commission under Contract No. W-7405-ENG-36.

We observe that (1^{\prime}) defines the sum of the first p powers of the n numbers x_{1}, \cdots, x_{n}. Consequently neither S_{p+1}, \cdots, S_{n} nor the $p+1$ st through nth symmetric function of x_{1}, \cdots, x_{n} are uniquely determined. Thus if ${ }_{0} T_{n}$ and ${ }_{n-p} T_{n}$ are nth degree polynomials whose zeros give a set of nodes for $p=n$ and $p<n$ respectively, then

$$
{ }_{n-p} T_{n}={ }_{0} T_{n}-\pi_{n-p-1}
$$

where π_{n-p-1} is an arbitrary $(n-p-1)$ st degree polynomial.** In order to characterize π more exactly, we use a modification of a technique in Hildebrand [4] originally due to Chebyshev. If $|x|>\left\{1,\left|x_{i}\right|\right\}$,

$$
\begin{aligned}
\int_{-1}^{1} \frac{d t}{x-t}-\frac{2}{n} \frac{n-p}{n-p} T_{n}^{\prime}(x) & =\sum_{k=p+2}^{\infty} \frac{\mathfrak{Q}_{k-1}}{x^{k}} \\
\mathbb{Q}_{k} & =m_{k}-\frac{2}{n} S_{k}
\end{aligned}
$$

After an integration with respect to x and some manipulation we get

$$
\begin{aligned}
{ }_{n-p} T_{n}(x)= & c x^{n} \exp \left\{-n\left[\frac{1}{2 \cdot 3 x^{2}}+\frac{1}{4 \cdot 5 x^{4}}+\cdots\right]-\left[\frac{b_{p+1}}{x^{p+1}}+\cdots+\frac{b_{n-1}}{x^{n-1}}+\frac{b_{n}}{x^{n}}\right]\right\} \\
& \cdot \exp \left\{-\sum_{k=n+1}^{\infty} \frac{b_{k}}{x^{k}}\right\}, \quad b_{k}=-\frac{n}{2} \frac{Q_{k}}{k} .
\end{aligned}
$$

Because of the left-hand side, series expansion on the right must terminate and thus neither the second exponential nor terms in first past $(1 / n(n+1))\left(1 / x^{n}\right)$ cancontribute to the polynomial part.

Thus

$$
\begin{aligned}
& { }_{n-p} T_{n}(x)=\text { Polynomial Part }\left[c x^{n} \exp \left\{-n \sum_{j=2}^{n} \frac{c_{i}}{x^{i}}-\sum_{i=p+1}^{n} \frac{b_{i}}{x^{i}}\right\}\right] \\
& \qquad \begin{array}{cl}
c_{i}=\frac{1}{j(j+1)} & j \text { even, } \\
=0 & j \text { odd. }
\end{array}
\end{aligned}
$$

For $p=n-1$ the contribution of $-b_{n} / x^{n}$ appears in the constant term of ${ }_{1} T_{n}$ as

$$
\begin{equation*}
{ }_{1} T_{n}={ }_{0} T_{n}-b_{n}={ }_{0} T_{n}-S_{n} / n+m_{n} / 2 \tag{2}
\end{equation*}
$$

For $p=n-2$ the contribution of $-b_{n-1} / x^{n-1}-b_{n} / x^{n}$ appears as

$$
\begin{equation*}
{ }_{1} T_{n}={ }_{0} T_{n}-x b_{n-1}-b_{n}=x \frac{n}{n-1}\left(\frac{m_{n-1}}{2}-\frac{S_{n-1}}{n}\right)-\frac{S_{n}}{n}+\frac{m_{n}}{2} . \tag{3}
\end{equation*}
$$

For $n=8$ or $n=10$ examination of the curves ${ }_{0} T_{n}-b_{n}$ reveals that only for a small range of values of b_{n} does ${ }_{0} T_{n}-b_{n}$ have n real zeros. In that case we have from (2)

$$
\sigma_{n}=\left(2 b_{n}\right)^{2}, \quad n=8 \quad \text { or } 10
$$

$$
{ }^{* *} \pi_{-1} \equiv 0 .
$$

For $n=11,{ }_{0} T_{11}$ is odd and has three real zeros. Thus ${ }_{0} T_{11}-b_{11}$ cannot have all real zeros, eliminating the possibility of $p=n-1$ for this case. If $p=n-2=9$, ${ }_{0} T_{11}-\alpha x-\beta$ will have 11 real zeros for appropriate α and β. From (3)

$$
\begin{align*}
\sigma_{11} & =\left[\frac{2}{11} \sum_{i=1}^{11} x_{i}^{10}-m_{10}\right]^{2}+\left[\frac{2}{11} \sum_{i=1}^{11} x_{i}^{11}-m_{11}\right]^{2} \tag{4}\\
& =\left(\frac{20}{11} \alpha\right)^{2}+(2 \beta)^{2} .
\end{align*}
$$

To preserve symmetry we set $\beta=0$.

Table I

n	b_{n}	$\sigma_{n}\left(b_{n}\right)$	\pm Nodes $\left(b_{n}\right)$	$\min \sigma_{n}$
8	-1.01117×10^{-3}	4.08986×10^{-6}	$\begin{aligned} & 0 . \\ & .443754 \end{aligned}$. 79221×10^{-6}
	$\left(\begin{array}{r}-.27075 \times 10^{-2}< \\ \text { for re }\end{array}\right.$	-. 101117×10	$\begin{aligned} & .572618 \\ & .899179 \end{aligned}$	
	-5.955352×10^{-4}	1.41865×10^{-6}	. 196220	$.30362 \times 10^{-6}$
			. 196124	
$\left(\begin{array}{c}-.7655 \times 10^{-3}<b_{10}<-.5955352 \times 10^{-3} \\ \text { for real nodes }\end{array}\right.$.571377 .920199	
			$\begin{aligned} & .920199 \\ & .645338 \end{aligned}$	
11	α	$\sigma_{n}(\alpha)$	Nodes (α)	. $34535 \times 10^{-6} *$
	$\overline{-3.14483 \times 10^{-4}}$	$\overline{3.26941 \times 10^{-7}}$	0.0	
			$\pm .264246$	
	$\left(\begin{array}{c}-8.53270 \times 10^{-4}<\alpha<-3.14483 \times 10^{-4} \\ \text { for real nodes }\end{array}\right.$		$\pm .264492$	
			$\pm .674800$	
			$\pm .927502$	

In Table I we list the approximate values of b_{8}, b_{10} and α that give all real zeros, the minimum σ_{n} 's consistent with these values and the corresponding quadrature nodes. Also we list the minimum σ_{n} 's as computed by Barnhill et al. It should be noted that their minimum σ_{11} is in error and the quadrature formula they have obtained corresponds roughly to selecting an α at the wrong end of the allowable interval since (4) shows $\sigma_{11} \sim \alpha^{2}$. Also note that for $n=8$ and $n=10$ requiring (1) to be exact for $(n-1)$ st degree polynomials only increases σ_{n} above the computed minimum about a factor of five.

[^0]Barnhill observes that the quadrature formula corresponding to minimum σ_{n} has multiple nodes at the origin. It is no longer clear if this will hold for $n=11$. By the manner in which they were chosen our quadrature formulas should have multiple nodes at some point in $[-1,1]$ although for $n=10$ and 11 we have only computed these nodes so that they agree to three figures.

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544

1. R. Barnhill, J. Dennis \& G. Nielson, "A new type of Chebyshev quadrature," Math. Comp., v. 23, 1969, p. 437.
2. A. Meir \& A. Sharma, "A variation of the Tchebicheff quadrature problem," Illinois J. Math., v. 11, 1967, pp. 535-546. MR 35 \#7058.
3. D. Kahaner, "Equal weight and almost equal weight quadrature formulas," SIAM J. Numer. Anal., v. 6, 1969, pp. 551-556.
4. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956, p. 346. MR 17, 788.

[^0]: ${ }^{*}$ In error. Nodes corresponding to this value of σ_{n} are [1]; $\pm .92676, \pm .70492$, $\pm .51792, \pm .45740,0,0,0$. Compare with nodes corresponding to $\alpha=-8.53270 \times$ 10^{-4} and $\sigma_{n}(\alpha)=2.40684 \times 10^{-4} ; \pm .925039, \pm .898403, \pm .716634, \pm .477831$, $\pm .477155,0$.

